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Abstract 
Differentiated thyroid cancer (DTC) generally has a favorable prognosis, but recurrence 

remains a concern for a subset of patients, highlighting the need for accurate predictive 

tools. While traditional methods, such as the American Thyroid Association (ATA) 

prognostic guideline, are widely used, they may not fully capture the complex patterns in 

clinical data. To address this, we developed a machine learning model using LightGBM 

and enhanced its interpretability with SHAP (SHapley Additive exPlanations) analysis. 

Our model, trained on data from 383 DTC patients, identified incomplete response to 

therapy as the most significant predictor of recurrence, alongside older age and a high-

risk level. The model achieved an accuracy of 93.51%, with precision and sensitivity of 

94.23% and 96.08%, respectively, using only five key features selected through Recursive 

Feature Elimination (RFE): age, physical examination, risk, tumor size and treatment 

response. SHAP analysis provided clear insights into how these features influenced 

predictions, offering a transparent and interpretable approach to risk stratification. These 

results highlight the potential of explainable machine learning to improve recurrence 

prediction, support personalized care, and build clinician trust, while laying the 

groundwork for further validation in diverse populations. 

Keywords: LightGBM, SHAP, supervised learning, medical informatics, recurrence 

prediction 

Introduction 

Differentiated thyroid cancer (DTC) arises from the follicular cells of the thyroid gland, and its 

differentiated nature indicates that the cancer cells still retain some of the normal features and 

functions of thyroid cells [1,2]. The primary subtypes of DTC are papillary thyroid cancer and 

follicular thyroid cancer, with the first one being the more prevalent form [3]. Papillary thyroid 

cancer is characterized by distinctive papillary structures in the tumor tissue, while follicular 

thyroid cancer typically forms as a solid mass without papillary structures. Although distinct, both 

subtypes exhibit a differentiated nature, indicating the preservation of specific normal thyroid 

cell traits. 

Despite a generally favorable prognosis associated with DTC and associated with relatively 

low mortality rates, there remains concern regarding the risk of recurrence [4]. The challenges lie 

in the unpredictable behavior of some cases, as a subset of patients may experience recurrence, 

https://narraj.org/main
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necessitating ongoing surveillance and management. Understanding the factors contributing to 

recurrence risk is crucial for tailoring effective follow-up strategies and interventions, thereby 

optimizing outcomes for individuals affected by DTC. To address this concern, the American 

Thyroid Association (ATA) has established prognostic guideline that plays a crucial role in 

assessing and estimating the risk of recurrence for individuals diagnosed with DTC [5]. The 

guideline offers a comprehensive and widely accepted framework in the medical community for 

evaluating the likelihood of disease recurrence based on various clinical and pathological factors 

[6]. 

The development of artificial intelligence (AI) and machine learning offers a promising way 

to enhance the prediction of recurrent DTC. Machine learning models can effectively examine 

large data sets, incorporate various factors, and detect subtle patterns that may signify an 

upcoming recurrence [7,8]. Researchers and medical professionals may be able to improve the 

predictive accuracy of models by integrating machine learning algorithms, opening the door to 

more individualized and successful treatment plans for thyroid cancer patients. Several studies 

have explored the application of machine learning algorithms in various cancer types, 

demonstrating improved predictive capabilities. For instance, a study focused on predicting 

breast cancer recurrence using multiple machine-learning algorithms, identifying the OneR 

algorithm as particularly effective for balancing sensitivity and specificity [9]. Similarly, a 

previous study utilized machine learning classification algorithms to predict cervical cancer 

recurrence, highlighting decision trees as especially useful for identifying predictive factors and 

linking improved socio-cultural conditions to reduced recurrence rates [10]. Another study 

employed five classifiers in early-stage endometrial cancer, including a Support Vector Machine, 

Random Forest, and Boosted Trees, achieving robust predictive accuracy with a multi-

algorithmic approach [11]. For DTC, Boorzoei et al. [12] demonstrated the utility of classic 

machine learning models in effectively stratifying recurrence risk. 

Recently, gradient-boosting algorithms have gained significant popularity in machine 

learning, often outperforming deep learning models in tabular data tasks [13]. One such example 

is Light Gradient Boosting Machine (LightGBM), a highly efficient gradient-boosting framework 

[14]. LightGBM has demonstrated exceptional performance in various predictive tasks, including 

medical applications, due to its ability to handle large datasets, capture complex patterns, and 

process categorical data efficiently [15-17]. Its ability to build accurate models quickly and with 

less computational resource demand, makes it an attractive option for predicting outcomes like 

cancer recurrence, offering the potential for more precise and individualized treatment plans for 

thyroid cancer patients. 

As AI and machine learning become more common in medical research and clinical 

applications, there's a growing focus on the need for explainable models [18]. Machine learning 

algorithms can be quite complex, often resulting in "black box" models where it is hard to 

understand how predictions are made [19,20]. In healthcare, especially in critical areas like 

cancer prognosis, having clear explanations for predictions is crucial. One method that can help 

with this is SHAP (SHapley Additive exPlanations). SHAP explains model predictions by showing 

how much each feature contributes to the decision, making it is easier to understand how different 

factors affect the outcome [21]. This transparency helps healthcare professionals interpret AI 

predictions clearer, which is important for patient communication and decision-making. 

Ultimately, SHAP builds trust in AI models and supports their use in clinical settings. 

In this study, our primary objective was to develop a machine-learning model for predicting 

the recurrence of DTC by prioritizing an explainable machine-learning approach. In contrast to 

conventional "black box" model, our method sought to produce discernible, interpretable insights 

into the fundamental elements influencing recurrence risk, in addition to accurate predictions. 

The aim of this study was to promote trust and usefulness among healthcare providers while 

facilitating efficient patient communication by addressing the crucial demand for transparency. 

This approach advances evidence-based and individualized management solutions for people 

with DTC by integrating AI into thyroid cancer prognosis. 
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Methods 

Dataset 

The dataset utilized in this study originated from the research conducted by Borzooei et al. [12], 

which involved a retrospective cohort of 383 patients diagnosed with DTC at a single medical 

center. The diagnoses encompassed histopathological subtypes such as papillary, micropapillary, 

follicular, and Hürthle cell carcinoma. The study spanned 15 years, with all patients undergoing 

a minimum follow-up period of 10 years from the time of surgery and initial diagnosis. Among 

the 383 patients, 275 experienced recurrences, while 108 did not. The dataset included 16 

features, all categorical, which were encoded for analysis. A detailed description of each feature 

in the dataset is presented in Table 1. 

Table 1. Description of features of the dataset used in this study 

Feature name Data type Description (values) 
Age Integer Patient's age in years (15–82 years old) 
Sex Categorical Sex of the patient (0: Female, 1: Male) 
Smoking Categorical Smoking status of the patient (0: No, 1: Yes) 
History smoking Categorical History of smoking for the patient (0: No, 1: Yes) 
History radiotherapy Categorical History of radiotherapy for the patient (0: No, 1: Yes) 
Thyroid function Categorical Thyroid function status (0: Euthyroid, 1: Subclinical 

hypothyroidism, 2: Clinical hypothyroidism, 3: Subclinical 
hyperthyroidism, 4: Clinical hyperthyroidism) 

Physical examination Categorical Results of the physical examination (0: Normal, 1: Single 
nodular goiter-right, 2: Single nodular goiter-left, 3: 
Multinodular goiter, 4: Diffuse goiter) 

Adenopathy Categorical Presence or absence of adenopathy (0: No, 1: Right, 2: Left, 3: 
Bilateral, 4: Posterior, 5: Extensive) 

Pathology Categorical Pathological characteristics (0: Papillary, 1: Micropapillary, 2: 
Follicular, 3: Hurthel cell) 

Focality Categorical Focality of the thyroid cancer (0: Uni-focal, 1: Multi-focal) 
Risk Categorical American Thyroid Association Risk (0: Low, 1: Intermediate, 2: 

High) 
T  Categorical Size of tumor (0: T1a, 1: T1b, 2: T2, 3: T3a, 4: T3b, 5: T4a, 6: 

T4b) 
Node Categorical Lymph node (0: N0, 1: N1a, 2: N1b) 
Metastasis Categorical Metastasis (0: M0, 1: M1) 
Stage Categorical Cancer stage based on TNM classification (0: I, 1: II, 2: III, 3: 

IVa, 4: IVb) 
Response Categorical Patient's response to treatment (0: Excellent, 1: Indeterminate, 

2: Biochemical incomplete, 3: Structural incomplete) 

 

The dataset was split into two subsets using stratified random sampling: 80% for training 

and 20% for testing. This approach ensures the model was trained on a large portion of the data, 

helping it learn patterns and relationships [22]. The training set was used to adjust the model’s 

parameters with different machine learning algorithms, allowing it to make predictions on new 

data. The testing set was kept separate to evaluate how well the model performs on data it hadn’t 

encountered before. 

Feature selection 

We performed feature selection to identify and retain the most predictive variables to improve 

the modeling process, refining the dataset for better model performance and interpretability 

[23,24]. We employed Recursive Feature Elimination (RFE), a systematic approach that 

evaluates features based on their contribution to the model’s performance. Using an iterative 

process, one feature was removed at a time and recalculated the model's accuracy at each step, 

continuing this process until only one feature remained. 

The best feature set was selected based on achieving the highest model accuracy with the 

smallest number of features, ensuring a balance between performance and simplicity. This 

approach ensures that the selected features contribute maximally to the model's predictive 

capability while reducing redundancy and complexity. By using accuracy as the fitness value and 

prioritizing minimal feature sets, the method enhances the final model's efficiency and 

interpretability [25]. 



Idroes et al. Narra X 2024; 2 (3): e183 - http://doi.org/10.52225/narrax.v2i3.183 

Page 4 of 13 

O
ri

g
in

al
 A

rt
ic

le
 

 

 

LightGBM model 

The LightGBM model was set up to balance performance and efficiency. It used the gradient-

boosting decision tree method, which was known for its high accuracy and efficiency in training. 

The model allowed up to 31 leaves per tree to manage complexity, and trees could grow to any 

depth to capture detailed patterns in the data. The learning rate was set to 0.1 to maintain a good 

balance between training speed and model accuracy, with the model running for 100 boosting 

rounds [26]. 

Model explainability 

To improve the explainability of our predictive model for DTC recurrence, SHAP was used to 

understand how each feature contributed to the model's predictions [21]. We visualized both the 

overall impact of features on the model's decisions and their individual effects. This approach 

helps make the model’s decision-making process more transparent, allowing healthcare 

professionals and patients to understand the results better. 

Performance evaluation 

To assess the effectiveness of our predictive model for DTC recurrence, a comprehensive set of 

performance metrics was employed, including accuracy, precision, sensitivity, specificity, and F1-

score. Accuracy measures the overall correctness of predictions, while precision gauges the 

proportion of correctly predicted positive instances among all predicted positives. Sensitivity 

assesses the ability of the model to capture all actual positive instances, and specificity assesses 

the ability of the model to capture all actual negative instances. The F1-score, which combines 

precision and recall, provides a balanced measure of the model's performance. The accuracy, 

precision, sensitivity, specificity, and F1-score equations are presented in Equations 1–5 [27,28]. 

 

Accuracy =  
TP +  FN

FP +  FN +  TP +  TN
 

(1) 

  

Precision =  
TP 

TP +  FP
 

(2) 

  

Sensitivity =  
TP 

FN +  TP
 

(3) 

  

Specificity =  
TN 

FP +  TN
 

(4) 

  

F1 − score =  2
Precision ×  Recall

Precision +  Recall
 

(5) 

 

where TP is true positive, FP is false positive, FN is false negative, and TN is true negative. 

Experimental setup 

Our predictive model for DTC recurrence was developed and implemented using Python version 

3.10.9 (Python Software Foundation, Delaware, USA), along with open-source libraries such as 

Scikit-learn (version 1.2.0) for machine learning functionalities, LightGBM (version 4.1.0) as the 

gradient boosting framework, and SHAP (version 0.41.0) for enhanced model interpretability 

through SHAP values. Additionally, a fixed random state of 0 (zero) was employed throughout 

the process to maintain reproducibility.  

Results 
Before developing the LightGBM models, a thorough analysis of the dataset was conducted to 

gain a deeper understanding of its structure and key characteristics. Principal component analysis 

(PCA) was used as a dimensionality reduction technique, allowing the data to be visualized in a 

two-dimensional space. The results of this analysis are presented in Figure 1, where the data 

points are represented in the reduced-dimensional space. In this analysis, the first two principal 

components (PC), PC-1 and PC-2, were selected for visualization. PC-1 accounted for the majority 

of the variance in the dataset, capturing 96.23%, while PC-2 was orthogonal to PC-1 and explained 
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an additional 1.25% of the variance. The scattered distribution of points underscored the potential 

presence of complex, non-linear relationships among the features in the dataset. These 

complexities would likely be difficult for traditional linear models to capture, and suggested the 

potential benefits of employing LightGBM, which is known for its effectiveness in handling non-

linear relationships within data. LightGBM's adaptability to such complexities in the dataset 

makes it a suitable choice for predictive modeling, offering the capability to capture intricate 

patterns that may contribute to the recurrence prediction of DTC. 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 1. Principal component analysis (PCA) visualization of the differentiated thyroid cancer 
(DTC) dataset. The figure indicates the lack of linear separability between the two classes. The 
data points are scattered across the plot with significant overlap between recurrence and non-
recurrence cases. This indicates that the dataset does not have clear linear boundaries, which 
could make it challenging for simple linear models, such as logistic regression, to effectively 
distinguish between the two classes. The majority of the data points are concentrated near the 
center of the plot, with some spreading along principal component 1 (PC-1), reflecting its 
dominant role in capturing variance. Principal component 2 (PC-2), while accounting for a 
smaller percentage of variance, still contributes to separating certain data points, particularly 
those on the periphery of the plot. 

The next step in the analysis involved performing RFE to select the most relevant features 

for the model. The results of this process are presented in Figure 2. Interestingly, the accuracy 

of the model using a subset of just five features was found to be equal to that of the model using 

all 16 features. This suggests that the additional 11 features do not significantly improve the 

model's predictive performance. In other words, the five selected features—'Age,' 'Physical 

Examination,' 'Risk,' 'T,' and 'Response'—appear to capture the essential information needed for 

effective prediction, while the other features may either be redundant or irrelevant for the task at 

hand. 

The five features identified by RFE were then used to train the LightGBM model. By focusing 

on this smaller, more efficient set of features, the model was trained more quickly, with less 

computational overhead, while still maintaining high predictive accuracy. Additionally, using a 

reduced set of features enhances the model's explainability, making it easier to interpret how 

individual features contributed to the predictions. This step highlights the importance of feature 

selection in improving model efficiency and performance, while also making the model more 

transparent and interpretable. 

The performance metrics for the LightGBM model trained using the top five features are 

presented in Figure 3. The model achieved a high accuracy of 93.51%, indicating that it made 

Yes 

No 

Recurred 
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correct predictions in a large majority of cases. This level of accuracy reflects the model’s ability 

to generalize well to unseen data, providing a solid foundation for its predictive reliability. The 

precision of 94.23% indicates that when the model predicted a positive outcome, it was correct 

94.23% of the time. This suggests that the model effectively minimizes false positives, making it 

reliable when the cost of incorrectly predicting a positive case is high. The sensitivity of 96.08% 

shows that the model correctly identified 96.08% of the actual positive instances in the dataset. 

This high sensitivity is particularly important in medical or high-stakes applications, where 

missing a positive case (false negative) could have significant consequences. On the other hand, 

the specificity of 88.46% indicates that the model could identify 88.46% of the actual negative 

cases correctly. While not as high as sensitivity, this is still a solid result, reflecting the model’s 

ability to avoid false positives, which is crucial for maintaining a balance between detecting 

positives and minimizing unnecessary interventions.  

 

 

 

 

 

 

 

 

 

 

 
Figure 2. Recursive Feature Elimination (RFE) results show model accuracy as features are 
iteratively reduced. 

Finally, the F1-score, which balances both precision and sensitivity, achieved a value of 

95.15%. This score provided an overall measure of the model’s ability to correctly identify positive 

cases while minimizing false positives and false negatives. A high F1-score like this demonstrated 

that the model was performing well in both identifying true positives and maintaining a low false 

positive rate. These metrics suggested that the model is well-calibrated, effectively identifying 

positive instances while maintaining a strong balance between sensitivity and specificity. This 

highlighted the model’s robustness and potential for use in predictive tasks where accuracy and 

reliability are important. 

To assess the prediction results, we present the confusion matrix in Table 2, which provides 

a detailed breakdown of the model's predictions and enables an evaluation of its classification 

accuracy. The matrix revealed that the model successfully predicted 49 cases of no recurrence, 

with only two misclassifications. Furthermore, it correctly identified 23 cases of recurrence, 

although three instances were misclassified. This outcome highlighted the model's strong 

performance in distinguishing between recurrence and no recurrence, particularly in its ability to 

identify patients without recurrence accurately. The relatively low number of misclassifications 

further demonstrated the model’s overall effectiveness in making precise predictions. 

Number of features 

A
cc

u
ra

cy
 



Idroes et al. Narra X 2024; 2 (3): e183 - http://doi.org/10.52225/narrax.v2i3.183 

Page 7 of 13 

O
ri

g
in

al
 A

rt
ic

le
 

 

 

 

Figure 3. Performance metrics for Light Gradient Boosting Machine (LightGBM) model with top 
five features (age, physical examination, risk, tumor size and treatment response).  

To further understand the model's decision-making process, the SHAP values were then 

examined, which provided a deeper insight into how individual feature contributed to the model's 

predictions for DTC recurrence. The SHAP value bar plot demonstrating the impact of various 

features on the model's predictions for DTC recurrence is presented in Figure 4. The SHAP 

values indicate the magnitude and direction of each feature's effect on the model's output. A 

positive SHAP value implies that the feature increases the likelihood of predicting a recurrence 

of DTC. In contrast, a negative SHAP value suggests a decrease in the likelihood of recurrence. 

Table 2. Confusion matrix of the Light Gradient Boosting Machine (LightGBM) model with top 

five features 

Actual Predicted 
Recurrent – No Recurrent - Yes 

Recurrent - No 49 2 
Recurrent - Yes 3 23 

 

The 'Response', the clinical response to the treatment, feature from the bar plot substantially 

impacts the model's predictions, with a mean absolute SHAP value of approximately +0.35 

(Figure 4). This suggested that the patient's response to treatment is a significant predictor of 

recurrence, with a positive response correlating with a lower likelihood of recurrence. 'Risk' and 

'Age' follow, each with a mean absolute SHAP value of +0.03, indicating that these factors 

moderately impact the prognosis. Higher risk levels and older age contribute to an increased 

probability of recurrence. 'Physical examination' and 'T' (tumor) were the least impactful features, 

each with a mean absolute SHAP value of +0.01. Their lower values suggest that while 

contributing to the model's predictions, their influence is relatively minor compared to factors 

like 'Response.' 

A SHAP decision plot is presented in Figure 5, visually explaining how each feature 

contributed to the model's output value for a specific prediction. The decision plot showed the 

cumulative effect of each feature on the model's output, starting from the base value (the average 

model output over the dataset when no features are considered) and ending at the actual model 

output value for a particular instance. 
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Figure 4. Figure 4. Bar plot of SHAP (SHapley Additive exPlanations) analysis for Light Gradient 
Boosting Machine (LightGBM) model with top five features. 

The 'Response' feature had a strong red indication, suggesting that it significantly increases 

the model's output value, thus raising the predicted risk of recurrence (Figure 5). Conversely, 

blue starting points for many instances, which suggested that when no other information was 

provided, the model might tend to predict a lower risk of recurrence. The overlapping lines for 

'Risk,' 'Age,' 'Physical Examination,' and 'T' show varying degrees of influence on the model's 

output. Some lines for 'Risk' and 'Age' veer into the red area, indicating that, in some cases, these 

features also contribute to a higher prediction of recurrence risk. Notably, the decision plot 

showed individual prediction paths, which can diverge significantly even if they start or end at 

similar values. This divergence illustrated the interplay and relative weights of the different 

features in the context of individual predictions (Figure 5). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5. SHAP (SHapley Additive exPlanations) decision plot for Light Gradient Boosting 
Machine (LightGBM) model with top five features. Each line represents an individual prediction 
for a patient, tracing how the combined features lead to the final output value. The plot starts on 
the left with the base value and moves to the right, showing the impact of each feature. Features 
that increase the model output are presented in red, indicating a higher likelihood of 
differentiated thyroid cancer (DTC) recurrence. In contrast, features that decrease the prediction 
are presented in blue, indicating a lower likelihood of recurrence. 

 

Model output value 

T 

Physical examination 

Response 

Age 

Risk 

Risk 

Response 

Age 

Physical examination 

T 

Mean (|SHAP value|) 
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The SHAP dependence plot, presented in Figure 6, visualized the individual contributions 

of the top five features to the model's predictions of DTC recurrence. These plots provided a 

detailed view of the relationship between each feature's categorical or numerical values and their 

SHAP values, which quantified the feature's impact on the prediction outcome.  

Figure 6. Dependence plot of SHAP (SHapley Additive exPlanations) analysis for Light Gradient 
Boosting Machine (LightGBM) models with top five features. 

The 'Response' feature, categorized into four levels (0: Excellent, 1: Indeterminate, 2: 

Biochemical incomplete, 3: Structural incomplete), demonstrated the most substantial influence 

on the model's predictions (Figure 6). The dependence plot revealed a clear trend where higher 

response categories, indicating poorer treatment outcomes, were associated with larger positive 

SHAP values. This signified that as the patient's response moved toward 'Structural incomplete' 

(3), the likelihood of recurrence significantly increased. This strong association underscored the 

clinical importance of treatment response in predicting DTC outcomes.  

Similarly, the 'Risk' feature, classified into three levels (0: Low, 1: Intermediate, 2: High), 

exhibited a moderate yet consistent impact on predictions (Figure 6). The dependence plot 

showed that patients with a high-risk classification (2) tended to have higher positive SHAP 
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values, reflecting an increased probability of recurrence. This finding aligned with established 

clinical evidence that higher-risk patients were more likely to experience adverse outcomes, 

validating the model's reliance on this feature for prediction. The 'Age' feature, represented as a 

continuous variable ranging from 15 to 82 years, showed a subtler influence on the model's 

predictions (Figure 6). The dependence plot indicated that older age was generally associated 

with slightly higher positive SHAP values, suggesting a modest increase in recurrence likelihood 

for older patients. However, the overall distribution of SHAP values for this feature remained 

narrower compared to 'Response' and 'Risk,' indicating that while age contributed to predictions, 

its impact was less pronounced (Figure 6). The 'Physical Examination' feature, categorized 

based on examination findings (0: Normal, 1: Single nodular goiter-right, 2: Single nodular 

goiter-left, 3: Multinodular goiter, 4: Diffuse goiter), exhibited a smaller range of SHAP values. 

The dependence plot suggested that findings such as multinodular or diffuse goiter might have 

contributed modestly to an increased risk of recurrence, but their overall influence was relatively 

minor. This feature appeared to have played a more supportive role in refining the model's 

predictions rather than being a primary driver. Finally, the 'T' feature, which represented tumor 

size and was categorized from 0 (T1a) to 6 (T4b), showed a limited range of SHAP values in its 

dependence plot (Figure 6). Larger tumor sizes, particularly in the higher categories (e.g., T4a 

and T4b), were associated with slightly positive SHAP values, indicating a small contribution to 

recurrence likelihood. However, this effect was minimal compared to the influence of features 

like 'Response' and 'Risk.' 

A SHAP summary plot of an individual prediction from the model (Figure 7), specifically 

for a case where recurrence of DTC did not occur. The plot showed the individual SHAP values 

for each feature and their impact on the model's prediction for this specific case. In this example, 

the 'Response' feature had the most substantial negative impact on the prediction, with a SHAP 

value of -0.26. The 'Age' of the patient contributed a smaller negative impact with a SHAP value 

of -0.01. Similarly, 'Risk' and 'Physical Examination' negatively influenced the prediction with 

SHAP values of -0.01. The feature 'T' had a SHAP value of 0, meaning it did not shift the 

prediction away. 

A SHAP summary plot for an individual prediction example where DTC recurrence occurred 

is presented in Figure 8. For this individual, 'Response' had a positive SHAP value of +0.72, 

making it was the most influential factor in predicting recurrence. 'T' has a small positive 

contribution with a SHAP value of +0.01, slightly increasing the likelihood of predicting a 

recurrence. Conversely, 'Physical Examination' and 'Risk' had negative SHAP values (-0.01), 

indicating a minor contribution toward predicting no recurrence. 'Age' had a SHAP value of 0, 

indicating no effect on the prediction outcome. 

 

 

 

 

 

 

 

 

 

Figure 7. Bar plot of SHAP (SHapley Additive exPlanations) analysis for individual prediction 
where differentiated thyroid cancer (DTC) recurrence did not occur. 
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Risk 

Age 

Physical examination 
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Figure 8. Bar plot of SHAP (SHapley Additive exPlanations) analysis for individual prediction 
where differentiated thyroid cancer (DTC) recurrence occurs. 

Discussion 
This study explored the use of machine learning, specifically the LightGBM model, for predicting 

recurrence in DTC. By incorporating SHAP values, we understood how different clinical factors 

contributed to the model’s predictions. This approach makes the results more transparent and 

easier for clinicians to interpret. 

Our findings showed that the patient’s response to initial therapy was the most important 

factor in predicting recurrence. This matches what is already known in clinical practice—patients 

with poor treatment responses are more likely to have their cancer come back. Other factors, like 

older age and being classified as high risk, also played a role, but their effects were smaller. These 

results confirm that the model aligns with medical knowledge while also identifying patterns from 

data that may not be immediately obvious. 

One key strength of this study is the focus on explainability. Using SHAP, we could clearly 

see how each feature, such as treatment response or age, influenced the model’s predictions [29]. 

This is important because doctors need to understand why the model makes certain predictions, 

especially in critical decisions like cancer follow-up care. For example, our decision plots showed 

that incomplete responses to treatment and older age consistently increased the risk of 

recurrence. This kind of insight can help doctors decide which patients need closer monitoring 

[30]. 

Another benefit of explainable models is improved communication with patients. When 

doctors can explain the reasons behind a prediction, patients may feel more confident in their 

care plan [31]. For instance, a patient with a high predicted risk of recurrence due to poor 

treatment response might better understand why they need more frequent follow-ups or 

additional treatments. 

The results of this study also support personalized care for DTC patients. By identifying high-

risk patients based on specific factors like treatment response and age, doctors can create follow-

up plans tailored to each patient’s needs. For example, patients at high risk may need closer 

monitoring, while those at low risk could avoid unnecessary tests or interventions. This approach 

can improve patient outcomes and make better use of healthcare resources. 

While the results are promising, there are some limitations. The data for this study came 

from one medical center, so the findings might not apply to all patient groups [12]. Future studies 

should test the model with data from different hospitals and populations to confirm its accuracy 

and usefulness. Also, the model only used clinical features; adding genetic, imaging, or other 

types of data could improve its predictions. 

Although SHAP helps make the model’s predictions understandable, the results must be 

carefully interpreted. For example, the importance of certain features might vary in different 

Response 

Age 

Risk 

T 

Physical examination 
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patient groups or settings. Overemphasizing a single feature without considering the full clinical 

picture could lead to errors. 

Conclusion 
This study has successfully demonstrated the application of machine learning and explainability 

techniques like SHAP in improving predictions for DTC recurrence. By using a LightGBM model, 

we achieved high accuracy while also providing insights into how clinical factors, such as response 

to initial therapy, age, and risk levels, influence predictions. Explainability enhances trust and 

usability in healthcare settings, enabling clinicians to effectively understand and communicate 

the rationale behind model predictions. This approach supports personalized care and better-

informed decision-making, demonstrating that machine learning when paired with interpretable 

tools, can be a valuable asset in advancing cancer prognosis and management. 
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