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Abstract 
Undeniable increase in pharmaceutical demand has encouraged researchers to develop 

analytical techniques to analyze drugs and monitor their effects. Chemometrics enabled 

simple spectroscopic approaches (such as infrared or UV spectroscopy) to analyze 

complex samples, including drug formulations, excreted fluids and tissues of living 

organisms. The aim of this study was to evaluate the research trend of this combinatorial 

technique utilized for pharmaceutical-related sample analysis using a bibliometric 

analysis. Bibliometric data of published literature from the Scopus database on March 14, 

2023 were retrieved using the keyword combinations of "multivariate", "chemometrics", 

"pattern recognition", "drug", "pharmaceutical" and "spectroscopy". Network 

visualization analysis was performed using VOSviewer on the co-occurring keywords and 

authorships, presenting data such as top cited papers (n=10). The literature review was 

performed based on the research trend revealed by the clusters that emerged in the 

network visualization. The analysis revealed that the first paper was published in 1973 

(n=1) and a total of 3544 records have been published as of March 14, 2023, comprising 

original research articles (n=3144, 88.71%) and review articles (n=232, 6.55%). The 

keyword “chemometrics” with Total Link Strength (TLS) of 826 emerged as the most 

abundant, followed by “metabolomics” (TLS=388), “Raman spectroscopy” (TLS=280), 

“metabonomics” (TLS=272), “nuclear magnetic resonance” or “NMR” (TLS=271), and 

“multivariate analysis” (TLS=254). Network visualization revealed that the research falls 

into two general categories: (1) drug toxicity and efficacy monitoring and (2) quality 

control of drug manufacturing. The top cited paper (n=3269) was a review article 

published in 1999 describing the utility of nuclear magnetic resonance combined with 

multivariate statistics for metabolite profiling of biological samples. The chemometric-

empowered spectroscopy techniques were expected to provide objective measurement 

during clinical studies and monitoring of therapeutic effects. 

Keywords: FTIR, infrared, network visualization, NMR, PCA, research landscape 

Introduction 

The pharmaceutical field has seen an acceleration in drug discovery and development, which 

consequently leads to the increasing importance of analytical methods [1, 2]. Analytical methods 

https://narraj.org/main
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are essential in stages of drug development to secure the quality, efficacy, and safety of 

pharmaceutical products, starting from drug discovery to quality control [3]. Such methods lead 

to the use of spectroscopy in combination with chemometrics as critical analytical tools in 

pharmaceutical development. Spectroscopy measures and interprets the interaction between 

electromagnetic radiation and matter, including the molecular structure, properties, and 

reactions [4]. When combined with chemometrics, users could extract useful information from a 

certain chemical system [5]. Some examples of spectroscopic techniques used in combination 

with chemometrics are the near-infrared (NIR) spectroscopy [6], Raman spectroscopy [7], and 

nuclear magnetic resonance (NMR) [8].  

In response to the rising demands of drug discovery, researchers have begun to further their 

attempts to find a breakthrough in chemometrics and spectroscopy in pharmaceutical 

development. Modernized analytical methods have shown its use, one of them being the advanced 

Raman spectroscopy which enables the support of novel on-site applications of pharmaceutical 

processes [9]. Recent years have also shown considerable importance in involving process 

analytical technology (PAT) to improve pharmaceutical product’s quality efficiency, due to its 

irreplaceable role in ultra-rapid monitoring and control [10]. In particular, multivariate data 

analysis has been widely reported for its utilization in controlling the quality of manufactured 

drugs. Its calibration model is able to predict chemical properties from a set of predictor variables, 

which is then applied to the NIR spectroscopy [11]. 

The recent issue lies in the lack of literature review and bibliometric analysis on recapping 

the current progress of chemometrics and spectroscopy usage in pharmaceutical development. 

This problem leads to the development not pacing well to the rising demand for further 

pharmaceutical research. Some other potential hotspots are still yet to be assessed further to 

hasten the aforementioned development. Herein, we performed a bibliometric analysis and 

literature review based on the ongoing progress of chemometrics and spectroscopy in 

pharmaceutical research. We gathered the metadata of the fifty-year published literature. 

Bibliometric studies have been widely used to assess the trend of research in the medical field and 

to find out any potential research hotspots yet to be further investigated [12-14]. This study 

delivered more information to researchers dealing with chemometrics and spectroscopy related 

research in pharmaceutical development. 

Methods 

Study design 

In this study, a bibliometric analysis was conducted to assess the impact of chemometrics and 

spectroscopy in the pharmaceutical field. The metadata of published papers was retrieved from 

the Scopus database (dated 14 March 2023), which consists of papers reporting the utility of 

chemometrics and spectroscopy for pharmaceutical-related products or samples. VOSviewer 

1.6.17 (Center for Science and Technology Studies, Leiden University, The Netherlands) was used 

to analyze the retrieved data via network visualization analysis [15]. Then, the literature review 

was performed based on the trend suggested by the network visualization analysis. 

Search strategy 

The literature search on the Scopus database used the following combination of keywords: 

("multivariate" OR "chemometrics" OR "pattern recognition" AND "drug" OR "pharmaceutical" 

AND "spectroscopy") to ensure the relevancy of the retrieved papers. The aforementioned search 

was used on all titles, abstracts, and keywords of the published paper. Some limitations during 

the investigation were the document type, publication stage, and exclusion of non-English papers 

(Figure 1). The retrieved information was extracted from the Scopus database, such as the 

authors’ information, title, abstract, and journal’s keywords, and title, all of which were exported 

in a CSV file (.csv). 

Keyword analysis and network visualization  

Once exported, the retrieved data from the Scopus database was assessed to cover the 

characteristics, research theme & clusters of the use of chemometrics and spectroscopy on 
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pharmaceutical research, along with the keywords occurrences. Network visualization analysis 

was then conducted using VOSviewer to generate mappings for each of the keyword co-

occurrences and countries’ co-authorship. The mappings also included the density visualization 

to further assess the focus on the distribution of the keywords and countries involved in the 

related study. 

 

Figure 1. Flowchart of the extraction process of the bibliometric data from reports covering 

spectroscopy combined with chemometric analysis for pharmaceutical-related samples. 

Selection of most cited paper 

The most cited papers were selected through the number of citations as the parameter of the 

scientific report’s impact on the related study. The filtering was then enacted to ensure the 

closeness of the selected papers to chemometrics and spectroscopy studies in pharmaceutical 

development. Thus, slightly related and unrelated papers will be excluded from the list.  

Results 

Characteristics of included paper on chemometrics and spectroscopy study in 

pharmaceutical development research 

A total of 3544 papers were retrieved from the Scopus database, consisting of original research 

articles (n=3144, 88.71%), review articles (n=232, 6.55%) and other documents, including 

conference papers, book chapters, editorial and letters (n=168, 4.74%). The detailed document 

types of the metadata were presented in Table 1. In terms of the year published, the publication 

of chemometrics and spectroscopy studies in pharmaceutical research saw a significant increase 

almost every year, most notable being papers published between 2003 to 2012, with a whopping 

438% rise in numbers. The publications then reached a stable number of papers released for the 

next decade, and never fell below 200 papers per year. The trend of chemometrics and 

spectroscopy study in pharmaceutical research based on the year published is presented in 

Figure 2. 
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Table 1. Distribution of the publication type on chemometrics and spectroscopy application in the 

pharmaceutical field 

Document type Document, n (%) 
Article 3144 (88.71) 
Review 232 (6.55) 
Conference paper 104 (2.93) 
Book chapter 38 (1.07) 
Editorial 7 (0.2) 
Note 6 (0.17) 
Short survey 6 (0.17) 
Conference review 5 (0.14) 
Book 1 (0.03) 
Letter 1 (0.03) 

 

In terms of subject field distribution, Chemistry had the highest number of papers published, 

followed by Biochemistry, Genetics & Molecular Biology and Pharmacology, Toxicology & 

Pharmaceuticals. These three research themes were the only ones discussed in more than 1000 

papers. The top ten related subject fields along with their respective document frequency have 

been presented in Figure 3. 

 
Figure 2. Annual research trend of chemometrics and spectroscopy application for 

pharmaceutical-related samples (1973–2023). 

 

  

 
Figure 3. Top ten related subject field distribution of chemometrics and spectroscopy application 

for pharmaceutical-related samples. 
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Chemometrics and spectroscopy study in pharmaceutical research based on the 

keyword occurrence frequency 

The ten most common keywords used in chemometrics and spectroscopy studies in 

pharmaceutical research according to the keyword occurrences are presented in Figure 4. The 

occurrences showed the number of times a certain keyword is used in the metadata of retrieved 

papers. ‘Chemometrics’, ‘metabolomics’, ‘Raman spectroscopy’ and ‘metabonomics’ are the top 

four keywords occurred in the papers, with ‘chemometrics’ significantly dominating the others, 

almost twice as much as the second-ranked most used keyword.  

 

 
Figure 4. The most frequently occurred keywords of studies reporting chemometrics and 

spectroscopy application for pharmaceutical-related samples. 

Co-occurrences of all keywords 

The network visualization and density visualization of the co-occurrences of all keywords have 

been presented in Figure 5. Certain limitations were enacted to better analyse the keywords’ co-

occurrences, where the minimum number of occurrences of a keyword was set to 15. The most 

used keyword was determined by identifying the keyword’s number of Total Link Strength (TLS), 

indicating the total strength of the co-occurrence links of a given keyword to other keywords. Of 

8246 keywords detected from the metadata, 86 keywords met the threshold. In line with the most 

frequently occurred keywords, the most used keyword in chemometrics and spectroscopy studies 

in pharmaceutical research was ‘chemometrics’ (TLS=826), followed by ’metabolomics’ 

(TLS=388), ’Raman spectroscopy’ (TLS=280), ’metabonomics’ (TLS=272), ’Nuclear Magnetic 

Resonance’ or ’NMR’ (TLS=271), and ’multivariate analysis’ (TLS=254). These six keywords were 

the only ones to pass 250 TLS, representing slightly more than 30% of all other keywords 

combined.  

The colors shown in the network visualization indicated the closeness of certain keywords to 

a research cluster (Figure 5). There were five clusters found in the chemometrics and 

spectroscopy study in pharmaceutical research, distinguished by their color. These clusters were 

comprised of keywords associated to ‘NMR spectroscopy for metabolite analysis in urinary 

samples’ (red), ‘chemometric methods in analysing Raman and NIR spectroscopy data’ (green), 

‘Raman spectroscopy for identifying polymorphism with multivariate statistics’ (blue), ‘quality 

control using PCA and FTIR spectroscopy’ (yellow), and ‘discrimination of drugs using FTIR 

combined with partial least square’ (purple). 

The density visualization shows different colors for certain keywords, indicating how other 

keywords revolve around it (Figure 5). Keywords in the red area indicated keywords with the 

highest density, followed by yellow, green, cyan. and dark blue. ‘Chemometrics’ and 

‘metabolomics’ were the keywords with the highest density, where all other keywords revolved 

around other keywords. A small portion of keywords were also seen to revolve around ‘Raman 

spectroscopy’ and ‘NMR’.  
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Figure 5. Network visualization of all keywords (weight: occurrences). (top) and density 

visualization of all keywords (weights: occurrences, score: average publications per year) 

(bottom). Nodes with the same color in 3A represent a research cluster. 

Clusters from the network visualization of keyword co-occurrence 

Clusters identified from the previous network visualization showed the research topics found in 

chemometrics and spectroscopy studies for pharmaceutical-related samples. The clusters and 

suggested research hotspots ranked based on their size have been presented in Table 2. Five 

clusters were identified from the network visualization, with the main cluster found to suggest 

the research hotspot ‘metabolomics and NMR spectroscopy of urine samples.’ The research 

hotspot was considered acceptable due to how common NMR spectroscopy is used to perform an 

analytical technique to study the chemical & physical characteristics of molecules, including 

metabolites. ‘Chemometric methods in analyzing Raman and NIR spectroscopy data’ research 

hotspot indicated the application of statistical and mathematical methods in chemical data, using 

the partial least square (PLS) to analyze spectroscopy data such as Raman and Near Infrared 

(NIR). ‘Multivariate analysis in polymorphism studies’ research hotspot suggested the use of 

Raman spectroscopy and multivariate analysis to study polymorphism using Process Analytical 



   Zulkifli  et al. Narra X 2023; 1(1): e80 - http://doi.org/10.52225/narrax.v1 i1.80 

 

 Page 7 of 16 

O
ri

g
in

al
 A

rt
ic

le
 

Technology (PAT). ‘Quality control using PCA and FTIR spectroscopy’ indicated the use of 

Principal Component Analysis (PCA) and Fourier Transform-Infrared (FTIR) spectroscopy in 

controlling the quality of chemical samples. Lastly, the ‘drugs analysis using spectroscopy 

techniques’ research hotspot is likely related to the discriminant analysis and FTIR and 

attenuated total reflectance (ATR)-FTIR spectroscopy in analyzing drugs.  

Table 2. Clusters formed by keywords’ co-occurrences of chemometrics and spectroscopy study 

in pharmaceutical research 

Cluster Top keywords Research hotspot(s) 

I 
Metabolomics, metabonomics, NMR, 
NMR spectroscopy, urine 

NMR spectroscopy for metabolite analysis in 
urinary samples 

II 
Chemometrics, PLS, Raman, NIR, partial 
least squares 

Chemometric methods in analyzing Raman 
and NIR spectroscopy data 

III 

Raman spectroscopy, multivariate 
analysis, multivariate data analysis, 
process analytical technology, 
polymorphism 

Raman spectroscopy for identifying 
polymorphism with multivariate statistics  

IV 
Quality control, principal component 
analysis, classification, FTIR, PCA 

Quality control using PCA and FTIR 
spectroscopy 

V 
Drugs, discriminant analysis, FTIR 
spectroscopy, partial least square, ATR-
FTIR spectroscopy 

Discrimination of drugs using FTIR 
combined with partial least square  

Co-authorship country 

The network visualization and density visualization mappings of the co-authorship countries have 

been presented in Figure 6, aiming to interpret the countries’ co-authorship and collaboration 

between each identified group of countries. Restrictions were enacted on the mapping to refine 

the countries’ co-authorship analysis, where the minimum number of documents and citations in 

a country was 5 and 10, respectively. Of 104 identified countries, 47 met the threshold.  

The United States (documents=623, citations=24078, TLS=285) and the United Kingdom 

(documents=355, citations=23444, TLS=278) were the top two countries, as well as the only ones 

having TLS larger than 200. The ranking was then followed by Germany (documents=195, 

citations=7210, TLS=171), France (documents=159, citations=5291, TLS=141) and China 

(documents=583, citations=15633, TLS=140). Interestingly, despite being the second top 

countries in terms of their link strength, the United Kingdom’s number of publications is 

considered smaller than China, showing how intense the United Kingdom researchers in 

collaborating with the other countries. Based on the number of link strengths, the United 

Kingdom and the United States had the highest number of collaborations (LS=49), followed by 

China and the United States (LS=37) and China and Australia (LS=21), and the United Kingdom 

and Germany (LS=21). 

Most cited papers covering chemometrics and spectroscopy in pharmaceutical 

topics 

The list of the most cited papers of chemometrics and spectroscopy studiesy in pharmaceutical 

research is presented in Table 3. ‘Metabonomics: Understanding the metabolic responses of 

living systems to pathophysiological stimuli via multivariate statistical analysis of biological NMR 

spectroscopic data’ authored by Jeremy K. Nicholson and colleagues was the most cited article in 

chemometrics and spectroscopy in pharmaceutical research, cited by 3269 papers since its 

publication in 1999. The second most cited article—also only the other article to be cited more 

than 1000 times was a paper authored by Kodo Kawase and colleagues in 2003 titled ‘Non-

destructive terahertz imaging of illicit drugs using spectral fingerprints’, cited by 1242 papers. It 

is also worth noting that none of the top ten most cited papers of chemometrics and spectroscopy 

in pharmaceutical research was published in the last ten years (2013-2023), with the newest 

article published in 2010. Of the top ten most cited papers in this list, three focused on 

metabolomics and NMR spectroscopy research (cluster I) and three on multivariate analysis in 

polymorphism studies (cluster III), covering more than half of the list. 
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Figure 6. Network visualization of countries’ co-authorship (top) and Density visualization of 

countries’ co-authorship (bottom). 

Discussion 

The 50-year progress 

The research about a combination of chemometric and spectroscopy has been established for 

almost half a century (50 years), with the number of annual publications tend to remain constant 

after 2017 (<250 publications/year). Throughout those years, a high proportion of original 

research articles have been published (88.71%), with only 6.55% review articles. This finding 

indicates that this research field has matured and contrasts with other research themes such as 

COVID-19 [12] and pollutant degrading enzymes – laccase [26]. The top-cited paper by Nicholson 

and colleagues has reached 3269 citations, which is relatively higher than others [26]. The inter-
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countries collaborations are mostly found in the United Kingdom, the United States, China, 

Australia, and Germany, which these countries are leaders in pharmaceutical industries [27]. 

Based on the clusters of co-occurring keywords, the application of chemometric and spectroscopy 

combinations in the pharmaceutical field could be generalized into two: (1) drug toxicity and 

efficacy monitoring and (2) quality control of drug manufacturing. 

Table 3. Top 10 most cited papers in chemometrics and spectroscopy in pharmaceutical research 

Rank Title First author Year of 
Publish 

Citation Ref 

1 Metabonomics: Understanding the 
metabolic responses of living systems 
to pathophysiological stimuli via 
multivariate statistical analysis of 
biological NMR spectroscopic data 

Nicholson, J.K., 
Lindon, J.C., Holmes, 
E. 

1999 3269 [16] 

2 Non-destructive terahertz imaging of 
illicit drugs using spectral fingerprints 

Kawase, K., Ogawa, Y., 
Watanabe, Y., Inoue, H. 

2003 1242 [17] 

3 A review of near-infrared 
spectroscopy and chemometrics in 
pharmaceutical technologies 

Roggo, Y., Chalus, P., 
Maurer, L., Edmond, 
A., Jent, N. 

2007 932 [18] 

4 Symbiotic gut microbes modulate 
human metabolic phenotypes 

Li, M., Wang, B., 
Zhang, M., … Li, L., 
Zhao, L. 

2008 866 [19] 

5 Near-infrared spectroscopy and 
imaging: Basic principles and 
pharmaceutical applications 

Reich, G. 2005 701 [20] 

6 NMR-based metabolomic analysis of 
plants 

Kim, H.K., Choi, Y.H., 
Verpoorte, R. 

2010 678 [21] 

7 3D-QSAR in drug design - A review Verma, J., Khedkar, 
V.M., Coutinho, E.C. 

2010 549 [22] 

8 New chemical descriptors relevant for 
the design of biologically active 
peptides. A multivariate 
characterization of 87 amino acids 

Sandberg, M., Eriksson, 
L., Jonsson, J., 
Sjöström, M., Wold, S. 

1998 497 [23] 

9 Liver, Muscle, and Adipose Tissue 
Insulin Action Is Directly Related to 
Intrahepatic Triglyceride Content in 
Obese Subjects 

Korenblat, K.M., 
Fabbrini, E., 
Mohammed, B.S., 
Klein, S. 

2008 436 [24] 

10 NMR-based metabonomic 
approaches for evaluating 
physiological influences on biofluid 
composition 

Bollard, M.E., Stanley, 
E.G., Lindon, J.C., 
Nicholson, J.K., 
Holmes, E. 

2005 413 [25] 

Pharmaceutical-related components analysis  

Drug toxicity and efficacy monitoring 

Chemometric approaches are advantageous when applied to assess the efficacy and side effects 

of drugs and treatment monitoringbecause their samples are biofluids which could be collected 

in less invasive procedures [28]. Mostly, the NMR – as the analytical instrument and blood and 

urine – as biofluid samples were used for this purpose [29]. Animal models (rat or mouse) were 

widely used in the reports because it was not ethical to induce toxicity in human subjects [30-32]. 

The combination technique has been suggested to detect multiple organ injuries based on urinary 

sample analysis [32-34]. Reports reporting chemometric and spectroscopy combinations for 

pharmaceutical-related samples have been summarized and presented in Table 4. 

Since it can be used to analyze metabolomic profiles in biofluids, the combined techniques 

could also be used to detect disease development and progression with implications of therapeutic 

efficacies. The summary of the combinatorial techniques to observe disease development and 

progression has been presented in Table 5. The application ranged from detecting cancer to the 

most recent infectious disease – coronavirus 2019 (COVID-19) [35, 36]. As a complementary 

technique, imaging FTIR in combination with PCA and unsupervised hierarchical cluster analysis 
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(UHCA) was used to detect lung cancer in animal tissue, giving a comprehensive outlook on 

histological images [37]. Sometimes the methods were combined with HPLC to provide more 

comprehensive metabolomic data [38]. 

 

Table 4. Drug toxicity and efficacy monitoring using combinatorial techniques of chemometric 

and spectroscopy 
Author, Year 
[Ref] 

Chemometric(s) 
combined with 
H1 NMR 

Sample Findings 

    

Sussulini et 
al., 2009 
[39] 

PLS-DA Blood serum of patients 
with bipolar disorder 
treatment 

Distinguished lipids, lipid-metabolism-
related molecules, and amino acids 
profiles related to lithium or other 
medications 

Liu et al., 
2011 [30] 

PLS-DA Plasma of rats treated 
with anti-depressant 

Reduced chronic unpredictable mild 
stress-associated metabolites after 
Xiaoyaosan treatment. 

Holmes et 
al., 2000 
[33] 

PCA, SIMCA Urine of rats treated with 
hydrazine or HgCl2 

Distinguished organ toxicity (liver vs. 
kidney) with 98% accuracy and 79% 
sensitivity. 

Waters et al., 
2001 [40] 

PCA Urine and plasma of rats 
treated with α-
naphthylisothiocyanate 

Identification of key metabolites related 
to hepatic intoxication 

Van Dorsten 
et al., 2006 
[41] 

PCA, PLS-DA Urine and plasma of 
human subjects 
consuming green tea or 
black tea 

Identification of green tea effects on 
oxidative energy metabolism-related 
metabolites 

Winnike et 
al., 2010 [34] 

PCA, OPLS-DA Urine of healthy adults 
receiving acetaminophen  

Early detection of liver injury (before 
ALT increase) 

Wei et al., 
2009 [31] 

PCA, PLS-DA Urine and serum of rats 
receiving realgar 

Identification of metabolites related to 
realgar-induced oxidative damage 

Lenz et al., 
2004 [32] 

PCA Urine of rats receiving 
cyclosporin A 

Identification of the onset of 
cyclosporin A-nephropathy 

Van Doorn et 
al., 2007 
[42] 

PCA, DAPC Urine and blood plasma 
of diabetic patients 
receiving 
thiazolidinediones 

Monitoring of thiazolidinediones 
therapy based on related biomarkers 

Daykin et al., 
2005 [38] 

PCA Urine of healthy subjects 
receiving  

Identification of black tea flavonoid 
metabolites related to the treatment 
efficacy monitoring 

Huo et al., 
2009 [43] 

PCA, PLS Serum of diabetic 
patients receiving 
metformin 

Treatment efficacy monitoring was 
based on the changes of amino acids 
and glucose and non-glucose 
metabolites. 

Romick-
Rosendale et 
al., 2009 
[44] 

PCA, PLS-DA Urine and feces of mice 
receiving enrofloxacin 

Detection of gut microbiome dysbiosis  

ALT, alanine aminotransferase; PCA, principal component analysis; PLS-DA, partial least square 
discriminant analysis; PLS, partial least square regression analysis; DAPC, discriminate analysis of principal 
component; SERS, surface enhanced Raman spectroscopy; SLIPSERS, slippery liquid-infused porous 
surface-enhanced Raman spectroscopy; OPLS-DA, orthogonal projections to latent structures-discriminant 
analysis; MCR-ALS, multivariate curve resolution-alternating least square; SIMCA, soft independent 
modelling of class analogy. 

 

Table 5. Disease development and progression monitoring using combinatorial techniques of 

chemometric and spectroscopy 
Author, Year 
[Ref] 

Spectroscopy Chemometric Sample Findings 

     

Jakubczyk et 
al., 2022 
[45] 

FTIR PLSR, PCA, 
and machine 
learning 

Follicular 
fluid 

Idiopathic female infertility 
determination (~100% accuracy). 
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Author, Year 
[Ref] 

Spectroscopy Chemometric Sample Findings 

     

Bari et al., 
2022 [46] 

SERS PCA, PLS-DA, 
PLSR 
 
 

Centrifugally 
filtered 
serum 

HBV-infected sample can be 
differentiated from that of non-
infected samples. 

Carswell et 
al., 2022 [47] 

Raman 
spectroscopy 

PCA, DAPC, 
PLSR 

Urine Quantification of macro- and 
microhematuria (>90% accuracy). 

Cai et al., 
2022 [35] 

SLIPSERS PCA, PLS-DA, 
OPLS-DA 

Blood Detection of lung cancer 
efficiently (~100% accuracy, small 
samples and rapid process). 

Robertson et 
al., 2022 
[36] 

Raman 
spectroscopy 

PCA, DAPC Urine  Identification of COVID-19 
associated diseases, COVID-19 
severity, and long COVID-19 
(>90% accuracy) 

Senger et al., 
2022 [48] 

Raman 
spectroscopy 

PCA, DAPC Urine  Detection of lime disease 
(compared with healthy subjects) 
with 88.7% accuracy, 83.3% 
sensitivity, and 91.0% specificity. 

Caixeta et al., 
2023 [49] 

ATR-FTIR PCA, MCR-
ALS 

Urine More accurate estimation of 
glucose concentration compared 
with enzyme assays. 

Koehler et 
al., 2022 
[50] 

ATR-FTIR PCA, OPLS-
DA 

Serum Correct detection of 
paracoccidioidomycosis in almost 
all samples (100% sensitivity and 
specificity) 

Ortega-
Hernández 
et al., 2022 
[51] 

FTIR+ nano-
immunosensor 

PCA Urine Discrimination of acute kidney 
injury from healthy patients. 

PCA, principal component analysis; PLS-DA, partial least square discriminant analysis; PLS, partial least 
square regression analysis; DAPC, discriminate analysis of principal component; SERS, surface-enhanced 
Raman spectroscopy; SLIPSERS, slippery liquid-infused porous surface-enhanced Raman spectroscopy; 
OPLS-DA, orthogonal projections to latent structures-discriminant analysis; MCR-ALS, multivariate curve 
resolution-alternating least square 

Quality control of drug manufacturing  

Summaries of reports on the use of spectroscopy in combination with chemometrics for drug 

quality control have been presented in Table 6. Studies on the utilization of this combinatorial 

technique have been reported more recently, suggesting the shifted trend in this research field.  

Infrared spectroscopy and its modified versions are mostly used for this purpose due to their 

simplicity and rapid analysis [52-56]. While PCA is the common chemometric discriminant 

method, PLSR has been used widely to quantify certain compositions of active pharmaceutical 

ingredients in drug formulations, including monoclonal antibodies (mAbs) and 

chemotherapeutical formulations [55, 57]. This combinatorial technique is particularly popular 

among traditional medicine manufacturers [52, 56, 58-61]. Not only to ensure the compositions 

among the formulations remain the same, a combination of spectroscopy and chemometric could 

be used to differentiate polymorphism in drugs such as triclabendazole [62]. 

 

Table 6. Drug manufacturing quality control using combinatorial techniques of chemometric and 

spectroscopy 
Author, Year 
[Ref] 

Spectroscopy Chemometric Sample Findings 

     

Geskovski et 
al., 2021 [54] 

MIR PLS Extracts of cannabis 
flower 

Quantification of 
tetrahydrocannabinol and 
cannabidiol 

Sakira et al., 
2021 [53] 

NIR PCA, PLSR Metronidazole tablet Low-biased and accurate QC 
of metronidazole 
formulations 

Gong et al., 
2021 [52] 

UV, FTIR HCA, PLS Liquorice tablet Accurate identification and 
quantification of liquiritin, 
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Author, Year 
[Ref] 

Spectroscopy Chemometric Sample Findings 

     

glycyrrhizinic acid, and 
sodium benzoate 

Ren et al., 
2021 [58] 

UV, HPLC PCA, DR, 
LDA 

Curcuma-based 
herbal medicine  

Prediction of bioactive 
contents in Curcumae 
rhizome from different 
cultivation places 

Wang et al., 
2021 [59] 

UPLC, FTIR QAMS, 
AMSQFM 

Yankening tablets Accurate and low-biased 
quantification of berberine 
and baicalin 

Makki et al., 
2021 [57] 

Raman, FTIR PLSR Drugs containing 
anticancer agents 

Accurate and low-biased QC 
for commercial intravenous 
chemotherapeutic 
formulations (Raman>FTIR) 

Yao et al., 
2022 [56] 

FTNIR, GC-
MS, (UHPLC-
Q-Exactive 
Orbitrap/MS 

PCA, OPLS-
DA 

Wild and cultivated 
agarwood 

Identification of 
metabolomic variation 
between wild and cultivated 
agarwood 

Makki et al., 
[55] 

Raman PLSR, PLS-
DA 

Commercial 
formulations 
containing 
cetuximab, rituximab, 
trastuzumab, 
bevacizumab 

Validation of mAbs 
conformity 

Yu et al., 
2022 [61] 

HPLC-UV-
ELSD 

PLSR, CCA Bushen Huoxue 
Prescription 

Quantification of puerarin, 
daidzin, salvianolic acid B 
and ginsenoside Rb1 as 
active agents 

Wang et al., 
[60] 

ATR-FTIR, 
HS-GC-MS 

PCA, HCA, 
BP-NN, 
KNN, LDA 

Dried tuberous roots 
of Curcumae Radix 

Discrimination and 
characterization of volatile 
contents from Curcumae 
Radix (100% discriminant 
accuracy) 

Salazar-
Rojas, et al 
2021 [62]  

NIR  PLS Triclabendazole Faster polymorphic control 
(60%) 

Rabiere et 
al,m 2022 
[63] 

HPLC, GC-
MS, XPRD, 1H 
NMR, NIR 

PCA, HCA Omeprazole Discrimination of 
omeprazole and omeprazole 
magnesium based on 
manufacturing source 

AMSQFM, average method of systematic quantified fingerprint method; ATR-FTIR, attenuated total 
reflection fourier transformed infrared; BP-NN, back propagation neural network; CCA, canonical 
correlation analysis; DR, decision tree; FTIR, Fourier transform-infrared; FT-NIR, Fourier transform near-
infrared; GC–MS, gas chromatography-mass spectrometry; HCA, hierarchical cluster analysis; HPLC, high-
performance liquid chromatography; HPLC-UV-ELSD; high-performance liquid chromatography-
ultraviolet detector-evaporative light scattering detector; KNN, K-nearest neighbor; LDA, linear 
discriminant analysis; MIR, mid-infrared; NIR, near-infrared; QAMS, quantitative analysis of multi-
components by single marker; QC, quality control; UHPLC-Q-Exactive Orbitrap/MS, ultraperformance 
liquid chromatography Quadrupole-Exactive Orbitrap tandem mass spectrometry; XPRD, X-ray powder 
diffractometry 

Future direction 

Most of the research on the toxicology of drugs was carried out in 2010 and before. Surprisingly, 

the studies used numerous animal subjects, which might be problematic based on the current 

ethical standards. For example, a study employed over 400 rats induced with hepatotoxin 

hydrazine or nephrotoxins HgCl2 [33]. A much fewer number of samples (n=25) were used in the 

hepatotoxicant model [40], but it remains concerning according to the present ethical standards. 

It has been suggested that the minimum number of animals in a study is 3, but the maximum 

should be 6 or 7 [64]. In the future, the development of in vitro models mimicking humane 

physiological systems or in vivo model with less ethical concerns (such as drosophila) could assist 
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this study [65]. Moreover, our extensive knowledge could make direct intervention human 

subjects possible. 

Future trajectories of chemometric research also include the development of mathematical 

models assisted by artificial intelligence (AI). Supervised models built by machine learning 

algorithms have been reported [59, 60]. Advanced modeling could also aid the accuracy and 

sensitivity of this technique in analyzing complex drug formulations such as those in traditional 

medicine [59-61]. With data that have been gathered for over 50 years of this research, the study 

will require less sample in the future, hence overcoming the ethical problems. Further, these 

methods could be standardized after the system is built on large data collected previously. This 

allows the system to overcome several biases in diagnosis or disease monitoring, including 

race/ethnicity, age, sex, unknown clinical variables, limited knowledge, socioeconomic status, 

and other characteristics [66]. This system indicates that the employment of chemometric and 

spectroscopy as a combinatorial analytical technique could provide objective assessment on drug 

efficacy, which contributes significantly to the clinical research in the future [67].  

Conclusions 

The 50-year research trend of analytical technique spectroscopy combined with chemometrics in 

pharmaceutical fields has been successfully observed using bibliometric information and network 

visualization. The research of spectroscopy and chemometrics in the pharmaceutical field could 

be divided into two categories: (1) drug toxicity and efficacy monitoring and (2) quality control of 

drug manufacturing. The research using this technique to measure the toxicology and efficacy of 

drugs through metabolomic profiling has reached a maturity stage and is now shifting to its utility 

for quality control of drug formulations, especially the traditional medicine. The accuracy of this 

technique could reach 100% in some studies, where the analysis could be run in a much shorter 

time as compared to the conventional method. Moreover, the techniques offer a minimum 

invasive approach. With the development of AI, the chemometric-empowered spectroscopy 

technique potentially has a significant role in the development of therapeutics.  
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